27 research outputs found

    Outgassing, Temperature Gradients and the Radiometer Effect in LISA: A Torsion Pendulum Investigation

    Get PDF
    Thermal modeling of the LISA gravitational reference sensor (GRS) includes such effects as outgassing from the proof mass and its housing and the radiometer effect. Experimental data in conditions emulating the LISA GRS are required to confidently predict the GRS performance. Outgassing and the radiometer effect are similar in characteristics and are difficult to decouple experimentally. The design of our torsion balance allows us to investigate differential radiation pressure, the radiometer effect, and outgassing on closely separated conducting surfaces with high sensitivity. A thermally controlled split copper plate is brought near a freely hanging plate-torsion pendulum.We have varied the temperature on each half of the copper plate and have measured the resulting forces on the pendulum. We have determined that to first order the current GRS model for the radiometer effect, outgassing, and radiation pressure are mostly consistent with our torsion balance measurements and therefore these thermal effects do not appear to be a large hindrance to the LISA noise budget. However, there remain discrepancies between the predicted dependence of these effects on the temperature of our apparatus.Comment: 6th International LISA Symposiu

    Closed form expressions for gravitational multipole moments of elementary solids

    Get PDF
    Perhaps the most powerful method for deriving the Newtonian gravitational interaction between two masses is the multipole expansion. Once inner multipoles are calculated for a particular shape this shape can be rotated, translated, and even converted to an outer multipole with well established methods. The most difficult stage of the multipole expansion is generating the initial inner multipole moments without resorting to three dimensional numerical integration of complex functions. Previous work has produced expressions for the low degree inner multipoles for certain elementary solids. This work goes further by presenting closed form expressions for all degrees and orders. A combination of these solids, combined with the aforementioned multipole transformations, can be used to model the complex structures often used in precision gravitation experiments.Comment: 9 pages 2 figure

    Picoradian deflection measurement with an interferometric quasi-autocollimator using weak value amplification

    Full text link
    We present an "interferometric quasi-autocollimator" that employs weak value amplification to measure angular deflections of a target mirror. The device has been designed to be insensitive to all translations of the target. We present a conceptual explanation of the amplification effect used by the device. An implementation of the device demonstrates sensitivities better than 10 picoradians per root hertz between 10 and 200 hertz.Comment: To be published in Optics Letter

    Design of an electrostatic balance mechanism to measure optical power of 100 kW

    Get PDF
    A new instrument is required to accommodate the need for increased portability and accuracy in laser power measurement above 100 W. Reflection and absorption of laser light provide a measurable force from photon momentum exchange that is directly proportional to laser power, which can be measured with an electrostatic balance traceable to the SI. We aim for a relative uncertainty of 10−310^{-3} with coverage factor k=2k=2. For this purpose, we have designed a monolithic parallelogram 4-bar linkage incorporating elastic circular notch flexure hinges. The design is optimized to address the main factors driving force measurement uncertainty from the balance mechanism: corner loading errors, balance stiffness, stress in the flexure hinges, sensitivity to vibration, and sensitivity to thermal gradients. Parasitic rotations in the free end of the 4-bar linkage during arcuate motion are constrained by machining tolerances. An analytical model shows this affects the force measurement less than 0.01 percent. Incorporating an inverted pendulum reduces the stiffness of the system without unduly increasing tilt sensitivity. Finite element modeling of the flexures is used to determine the hinge orientation that minimizes stress which is therefore expected to minimize hysteresis. Thermal effects are mitigated using an external enclosure to minimize temperature gradients, although a quantitative analysis of this effect is not carried out. These analyses show the optimized mechanism is expected to contribute less than 10−310^{-3} relative uncertainty in the final laser power measurement.Comment: 11 pages, 9 figures, accepted for publication in IEEE Transactions on Instrumentation and Measuremen
    corecore